| |||
关键词:大型;自由锻件;RST效应
长期以来,一些大型自由锻件的质量问题是在超声波探伤时,出现大面积密集型缺陷,严重时底波降低,甚至完全消失。
针对这种内部层状裂纹型缺陷,有人曾做过理论分析,提出了3种最有可能产生缺陷的理由:①未锻合的疏松;②夹杂性裂纹;③氢脆或白点。然后,根据显微观察来逐一辨别确认。但是,观察结果却排除了上述3种可能性。经过长期的观察和分析,推出了一个新的力学效应模型,即RST效应。
1 RST效应的定义和产生条件
大型圆饼类和板类自由锻件,在锻造成形过程中,经受很大的变形量后产生的内部层状裂纹缺陷,是由一种特殊的力学效应引起的,定义为RST效应(Rigid Slide Tearing Effect,刚性滑动撕裂效应)。
图1表示了在锻造过程中产生RST效应的情况。其特点是:当锻造工具(砧子等)在与锻件相接触表面上两方向(如砧子的长度和宽度,镦粗为直径)的尺寸都大大超过坯料的高度时,致使坯料内上下两个刚性区相遇。随后,在压机力的继续作用下,产生刚性区内部的层状刚性滑动变形并导致撕裂。
(a) 锻炼过程中上下两个刚性区“相遇”
(b) 锻炼内部的RST裂纹
图1 RST效应产生条件示意
(a) 平板间镦粗时内部刚性体相遇
(b) 平砧拔长时内部刚性体相遇
上平砧、下平台成形管板时内部刚性体相遇
图2 不同锻造方式下坯料内部的刚性体
(1) 特殊的边界条件和工具尺寸条件,如摩擦系数μ,砧子的长度L,进砧宽度W及坯料高度H。
(2) 在上述变形条件下形成坯料内部的刚性体相遇后,继续施以一定的压下变形量。
(3) 刚性体内部的金属完全失去弹性和塑性变形能力,在压力下继续强制性变形,被迫发生层状刚性滑动(或层状脆性滑动),直至超过材料的剪应变强度而撕裂破坏。
2 RST效应的作用机制
RST效应并不是在瞬间突然作用的,其机制按力学特性分为3个发展阶段:①弹性压缩变形,②刚性剪切变形,③刚性滑动撕裂。
弹性压缩变形阶段是指坯料内部上下两个刚性体发生了接触,并且在外力的作用下继续相向运动时,在刚性体内部产生弹性变形的过程。这一阶段一般比较短暂,在两刚性体接触宽度内的弹性潜能充分释放后,这部分材料就被“压实”了,如图3所示。
图3 RST效应作用第一阶段机制示意图
(a) “死区”未接触;(b) 刚刚相遇,弹性压缩变形开始;c 弹性压缩变形结束。
图4 刚性剪切变形阶段特征
刚性滑动撕裂阶段是指在刚性层间的剪切变形量达到某一极限值(即此时的材料剪切强度)时开始的撕裂破坏过程。首先,在部分刚性层间产生裂纹,然后再继续滑动撕裂扩大,直至坯料外部的受力压下变形结束为止。在这个过程中,处于“压实区”内的金属已实际上具有如同岩石一般脆性材料的特性了。图5表示此阶段的坯料内部特征。
图5 刚性滑动撕裂阶段特征
3 避免RST效应的工艺准则
根据RST效应的作用机制,只要合理控制锻造时的工艺参数,使坯料内部的刚性体不发生相遇,就可以完全避免由RST效应导致锻件内部产生“层状裂纹”的缺陷。图6表示了平砧锻造时,工艺参数(砧宽W0,坯料高度H)和刚性体尺寸参数(摩擦角α、β,刚性体高度h,l)之间的关系。
图6 工艺参数与刚性体尺寸之间的关系
α=β,h=l (1)
在一般的高温(如T≥1 100 ℃)变形状态下,摩擦系数μ大约在0.37~0.42之间。当W/H=1时,
α=33.3 °~37.0 ° h=l=0.37~0.42 H。
实际成形管板和板坯时,在初始阶段由于坯料的高度尺寸较大,W总是小于H,只是在成形后期才会出现W>H的情况。由于这时坯料表面温度已经降低(≤900 ℃),所以将摩擦系数μ按0.37计算,在W/H=1.35时,坯料内部的上下两个刚性体才会相遇。此外,考虑到在此时的温度条件下,压下变形量不宜太大(εh≤15%),以及在压下过程中,由于坯料的伸长和展宽,使W值发生增长(约10%)现象。另外,为了保证良好的内部变形效果,使初始时的W/H≥0.5,所以规定了避免RST效应的锻造成形工艺准则为:
0.5≤W/H≤1.0, εh≤15% (3)
在由镦粗成形的场合,应限制锻件径高比为:
D/H≤1.35或H/D≥0.74 (4)
其中,式(3)对上下变形不对称的场合也适用。
4 结论
RST效应主要与在锻造成形过程中,因表面摩擦影响产生的坯料内部刚性体高度有关,其发展过程有弹性压缩变形、刚性剪切变形和刚性滑动撕裂3个阶段。合理控制锻造成形过程中的砧宽比和压下量两个工艺参数,可以有效地避免RST效应的危害作用。